Simultaneous Time Trends in Dementia Incidence and Prevalence, 2005-2013, Saskatchewan, Canada
Suggested citation:

This study is based in part on de-identified data provided by the Saskatchewan Ministry of Health through the Health Quality Council. The interpretation and conclusions contained herein do not necessarily represent those of the Government of Saskatchewan or the Saskatchewan Ministry of Health.

Funding support was provided by a CIHR-SHRF Applied Chair in Health Services and Policy Research held by Dr. Debra Morgan (2009-2014) and in-kind funding from Saskatchewan Health Quality Council.
Executive Summary

The last decade has seen several noteworthy original studies of time trends in dementia epidemiology that have reported mixed results. These discrepancies may be partly due to variations in methods, study periods, and populations. One other original study of simultaneous trends in recent dementia incidence and prevalence has been published within the last decade, aside from the present study. The present study used linked administrative health data, for the period 2005/06 to 2012/13, for the province of Saskatchewan to: (1) investigate simultaneous time trends in 12-month age- and sex-specific dementia incidence and prevalence among individuals 45 years and older, and (2) examine the time trends in incidence by database of identification.

We employed a population-based retrospective cohort study design, extracting data from 7 Saskatchewan administrative health databases, linked by a unique anonymized identification number. The cohort consisted of individuals aged 45 and older at their first identification of dementia between April 1, 2005 and March 31, 2013. We drew on 4 of the 7 administrative health databases (hospital discharge abstracts, physician service claims, prescription drug, and RAI-MDS, i.e., long-term care) to develop the case definition algorithm.

Between 2005/06 and 2012/13, the 12-month age-standardized incidence rate of dementia declined significantly ($p < 0.0001$) by 11.07% (from 8.41 to 7.48 per 1,000 population at risk [PAR]) and the absolute number of incident cases dropped by 3.51% (from 3,389 to 3,270). Despite an increase of 11.38% in the PAR, the decline in the incidence rate was observed in every database of identification.

From 2005/06 to 2012/13, the 12-month age-standardized prevalence rate increased significantly ($p < 0.0001$) by 30.54% (from 21.35 to 27.87 per 1,000 PAR) and the absolute number of prevalent cases rose by 47.95% (from 8,795 to 13,012). During the same time period, the PAR increased by 12.16%. Most of the increase took place in the first four years of the study period, slowing between 2009/10 and 2012/13.

We observed a simultaneous trend of decreasing incidence and increasing prevalence of dementia over a relatively short 8-year period in the province of Saskatchewan. A lower incidence rate of dementia may be partly due to several factors, including rising education levels, healthier behaviours, and better treatment of vascular risks. Higher prevalence, and subsequently increased survival time with dementia, may be partly on account of better health services (including earlier diagnosis, possibly) and institutional care. Given the short 8-year study period, these time trends should continue to be observed over time.
Background

Dementia refers to a “clinical syndrome of cognitive decline” that interferes with daily functioning and generally occurs alongside behaviour and personality changes; the decline must not be the result of delirium or another condition (i.e., medical, neurological, or psychiatric) (Chertkow et al., 2013). The most common causes of dementia are Alzheimer’s disease (50-75%), vascular dementia (20-30%), frontotemporal dementia (5-10%), and dementia with Lewy bodies (<5%) (Alzheimer’s Disease International, 2014).

Incidence of dementia among adults aged 60-64 years is an estimated 3.1 per 1,000 person years and doubles every 5.9 years (World Health Organization, 2012). Females are no more likely than males to develop dementia, given the small sex differences in incidence across all age groups (Thies and Bleiler, 2013). However, prevalence is an estimated 19-29% lower among males than females aged 60 and older, with the exception of Asia Pacific and North America where prevalence is higher among men than women younger than aged 80 (World Health Organization, 2012). Depending upon world region, dementia prevalence ranges from 5-7% among all individuals aged 60 and older (World Health Organization, 2012). Prevalence among those aged 60-64 ranges from 0.3-1.8% and doubles with every 5.5-6.7 years of age (World Health Organization, 2012). Early onset dementia (i.e., before age of 65) accounts for approximately 6-9% of all prevalence (Prince et al., 2013).

Original studies published over the last decade reporting time trends in dementia have reported mixed results. Some key studies provide evidence of declining incidence (Rocca et al., 2011; Schrijvers et al., 2012; Qiu et al., 2013) and others indicate declining prevalence (Lobo et al., 2007; Langa et al., 2008; Matthews et al., 2013). In contrast, other research reveals increasing or stable dementia prevalence (Hall et al., 2009; Sekita et al., 2010; Mathillas et al., 2011; Bertrand et al., 2013; Jacklin et al., 2013; Qiu et al., 2013). To the best of our knowledge, only one other original study that examined simultaneous trends in recent dementia incidence and prevalence has been published within the last 10 years (Qiu et al., 2013). See Box 1 for a brief overview of selected original studies of time trends in dementia that have been published in the last decade.
Box 1. Summary of selected original studies of time trends in dementia

Incidence

Qiu et al. (2013) found that age-standardized dementia prevalence remained stable in a prospective cohort study of two 6-year cohorts aged 75 and older from 1987-89 and 2001-04 in central Stockholm, Sweden. Dementia incidence was not assessed directly, however, survival time based on 6-year follow-up was significantly longer for the later than earlier cohort, leading Qiu and colleagues to suggest that incidence decreased over the study period. In Rotterdam, the Netherlands, Schrijvers et al. (2012) conducted a prospective cohort study to compare incidence between two five-year cohorts aged 60-90. The age-adjusted incidence rate, based on DSM-III-R diagnostic criteria for both cohorts, declined across every age group and by 25% overall (female 28%; male 23%) from the 1990 to the 2000 cohort (overall from 6.56 to 4.92; females from 6.78 to 5.20; males from 6.25 to 4.48 per 1,000 person-years). The overall decline approached statistical significance, and Schrijvers et al. suggested that the findings underestimated the reduction in incidence rates due to a lower mortality rate in the 2000 compared to 1990 cohort. Rocca et al. (2011) reported that annual dementia incidence rates based on linked medical records between 1975 and 1994 in Rochester (US), fluctuated but ultimately decreased significantly by 30% over the last 10 years of the 20-year study period (1985-94). Rate reductions were particularly apparent among the 80-94 age group; sex-specific findings were not reported.

Prevalence

Using cross-sectional surveys with a two-stage design, Sekita et al. (2010) identified four separate cohorts (1985, 1992, 1998, and 2005) aged 65 and older in Hisayama (Japan). Sekita found that the overall age- and sex-adjusted dementia prevalence increased significantly by 38% between 1985 and 2005 (from 6.0 to 8.3 per 100), specifically significant for females at 41% (from 6.6 to 9.3 per 100) but not significant for males at 34% (from 5.4 to 7.2 per 100). Age-specific findings were not reported. In the county of Vasterbotten (Sweden), Mathillas et al. (2011) conducted one-phase cross-sectional surveys (field studies) with cohorts aged 85 and older in one city and five rural municipalities in 2000-02 and 2005-07. Based on DSM-IV diagnostic criteria, dementia prevalence over the 5-year period increased significantly by 40% overall (from 26.5 to 37.2 per 100), including a significant increase for females at 33% (from 30.9 to 41.1 per 100) but not significant for males at 44% (from 19.5 to 28.1 per 100). In a retrospective cohort study (registry study) of Alberta (Canada) physician claims data, Jacklin et al. (2013) used ICD-9 codes to compare trends in annual dementia prevalence among First Nations and non-First Nations of all ages between 1998 and 2009. Age-adjusted treated dementia prevalence increased at a significantly faster rate among First Nations than non-First Nations, rising 108% among First Nations (from 3.6 to 7.5 per 1,000) compared to 30% among non-First Nations (from 4.3 to 5.6 per 1,000). The annual prevalence rates were higher among non-First Nations females than males over time, but the reverse was observed among non-First Nations sexes. In a retrospective cohort study (registry study) of France’s national health care insurance data, Bertrand et al. (2013) used antidementia drug prescriptions and ICD-10 codes to determine annual dementia prevalence among individuals aged 65 and older between 2004 and 2010. Data included drug prescriptions, GP or specialist visits, hospitalizations, and other reimbursed health care expenditures. Bertrand et al. found that age- and sex-standardized prevalence increased significantly by 14% overall (from 3.7 to 4.2 per 100) over the 8-year period. Detailed sex-specific prevalence for the cohorts was not provided.
The value of using retrospective data to examine temporal trends in dementia incidence and prevalence can be illustrated in three key ways. The first of these is the investigation of possible impacts of population-level trends in modifiable risk factors throughout the lifecourse (early, midlife, and late life), on the incidence and prevalence of dementia (Alzheimer’s Disease International, 2014). Currently, moderate to robust evidence exists for four domains of modifiable dementia risk factors: developmental (e.g., occupational status, education), psychological (e.g., depression, anxiety, sleep disorders), lifestyle or behaviour (e.g., cigarette use), and cardiovascular (e.g., obesity, cholesterol, hypertension, diabetes) (Alzheimer’s Disease International, 2014). Downward trends in dementia incidence over time in populations with documented improvements in these risk factors (e.g., improved education levels and reduced hypertension) would provide further evidence of the association between dementia and these risk factors. The second use of retrospective data in secular trend studies is to provide evidence for the association between trends in dementia and other population-level trends and interventions, including demographics (e.g., aging; Langa et al., 2008; Sekita et al., 2010); life
expectancy (Schrijvers et al., 2012; Qiu et al., 2013); treatment of chronic diseases (e.g., use of statins; Langa et al., 2008; Hall et al., 2009 and hypertensive medications; Langa et al., 2008); treatment of cardiovascular diseases (Mathillas et al., 2011; Schrijvers et al., 2012); health and social care for individuals with dementia (Sekita et al., 2010; Mathillas et al., 2011); and standard of living (Langa et al., 2008). Third, current dementia projection methods are typically based on the assumption that certain factors will remain stable over time, such as age-specific dementia incidence and prevalence (Alzheimer’s Disease International, 2013), mortality, and dementia risk factors (except demographics) (Rocca et al., 2011). Such projections do not adequately account for ‘changing patterns in risk factors’ (Norton et al., 2013), i.e., trends in population-level factors, that can be accounted for in studies based on retrospective data.

There have been several recent original Canadian studies concerning dementia prevalence (Chartier et al., 2012; Fransoo et al., 2009; Gill et al., 2011; Jacklin et al., 2013; Jacklin and Walker 2012; Martens et al., 2010), but only one recent study of trends in prevalence (Jacklin et al., 2013). Further, there have been two original Canadian studies of dementia incidence (CSHA 2000; Tyas et al., 2006), both of which were based on data collected in the mid-1990s, but no recent studies of trends in prevalence.

Using linked administrative health data for the province of Saskatchewan for the time period between 2005/06 and 2012/13, the purposes of this study were to: (1) examine simultaneous age- and sex-specific temporal trends in dementia incidence and prevalence among individuals aged 45 and older, and (2) stratify any changes in incidence by database of identification.
Box 2. Methods

Setting
The province of Saskatchewan is the middle of three Canadian prairie provinces and covers 651,000 km² (Saskatchewan Bureau of Statistics, 2014). Between 2006 and 2013, the province’s population grew 116,021 (11.7%) from 992,302 to 1,108,303 (Statistics Canada, 2014a). The proportion of the population aged 45-64 grew from 25.1% to 26.1% while the proportion aged 65 and older declined from 15% to 14.4% (Saskatchewan Bureau of Statistics, 2014). Among the 13 provinces and territories, Saskatchewan’s growth was third largest, and larger than the national average (Statistics Canada, 2012). The province’s population growth of 74,047 between 2006 and 2011 (Saskatchewan Bureau of Statistics, 2014) was largely attributable to interprovincial migration (12,000; 16.2%) and immigration (28,000; 37.8%), with three times more immigrants during this period compared to 2001-2006 (9,800) (Statistics Canada, 2012).

All Saskatchewan residents receive health insurance and constitute the ‘covered population’ for the present study, with the exception of federally insured residents (e.g., federal prison inmates, members of the Canadian Forces and Royal Canadian Mounted Police) (Saskatchewan Ministry of Health, 2014). The Registered Indian population, and other residents whose costs are covered by another government body, are not included in the province’s Prescription Drug Plan (Saskatchewan Ministry of Health, 2010) and therefore are not included in the Prescription Drug Database employed in the current study. Approximately 13% of the Saskatchewan population in 2012 were classified as Registered Indians (Aboriginal Affairs and Northern Development Canada, 2012).

Data sources
Data were extracted from 7 provincial administrative health databases linked by a unique anonymized personal health services number (Saskatchewan Ministry of Health, 2010). Databases describing the demographic characteristics and insurance coverage for the population of Saskatchewan included the Person Health Registration System, Saskatchewan Resident Geography Database, and the Vital Statistics database. The databases from which the cohort were identified were the Hospital Discharge Abstract Database, Physician Services Claims Database, Prescription Drug Database, and the Resident Assessment Instrument - Minimum Data Set (RAI-MDS), which we will refer to as the Long-term Care (i.e., LTC) Database hereafter.

From 2002 onwards, the Hospital Discharge Abstract Database includes 5-digit ICD-10-CA codes to record up to 25 diagnoses per record. The Physician Services Claims Database includes information used by physicians to claim payment from the provincial government for services provided to patients and a 3-digit ICD-9 diagnosis code associated with the service (maximum of one diagnosis code per service claim) (Saskatchewan Ministry of Health, 2010). The two Prescription Drug Databases include information about the drug dispensed such as classification of drug and drug identification number (DIN), with only Saskatchewan Formulary drugs eligible for coverage. The Long-term Care Database contains assessment information collected at admission to a residential care facility, at regular three-month intervals, and upon significant changes in clinical status (Morris et al., 2010). Admission and quarterly assessment data were included in the present study.

Cohort case definition algorithm
Individuals aged 45 years or older at their first-ever recorded identification of dementia between April 1, 2005 and March 31, 2013 constituted the cohort. ‘Early onset dementia’ (i.e., before age of 65) affects approximately 6-9% of all prevalent cases (Prince et al., 2013), thus we employed an age cut-off of 45.

Individuals were identified as a dementia case if they met least one of the following criteria: >1 physician visit (ICD-9 codes 290, 294, 331, 797); >1 hospitalization (ICD-10-CA codes F00, F01, F02, F03, F04, F05.1, F06.8, F06.9, F09, F10.6, F10.7, F18.6, F18.7, F19.6, F19.7, G30, G31.0, G31.1, G91, R54); >1 prescription for a cholinesterase inhibitor (Aricept DINs 02232043, 02232044; Exelon DINs: 02242115-02242118, 02245240; Reminyl DINs: 02244298-02244300, 02266717, 02266725, 02266733); or – in the LTC database – a Cognitive Performance Scale score of 2 and over and/or a disease category of Alzheimer’s disease or dementia other than Alzheimer’s disease. Equivalent to an...

RaDAR-HQC Simultaneous Time Trends in Dementia Incidence and Prevalence, 2005-2013 5
average Mini Mental State Examination score of 19 or lower (Bartfay et al., 2013), a CPS score of 2 or higher indicates dementia at the moderate to severe stage (Perneczky et al., 2006) and possible mild to very severe impairment (Morris et al., 1994). A “washout” period of 5 years prior to the first identification of dementia was used to ensure that we correctly identified incident dementia.

Cohort members were required to have uninterrupted health insurance coverage, operationalized as having a gap in their insurance coverage of no more than 3 days at any time, from five years prior to the date of first identification of dementia (i.e., the “washout period”) until they died or moved out of the province. Further details regarding the cohort case definition used in the current study are available elsewhere (Kosteniuk et al., 2015).

Physician and hospital data are commonly used in administrative health data studies of dementia epidemiology, requiring at minimum one physician visit or hospitalization to identify a dementia case (Chartier et al., 2012; Fransoo et al., 2009; Gill et al., 2011; Jacklin et al., 2013; Jacklin et al., 2012; Manitoba Centre for Health Policy, 2012; Martens et al., 2010). Alzheimer’s disease does not have a diagnostic test for confirmation purposes (St Germaine-Smith et al., 2012) and underdiagnosis of dementia is a significant problem (Boustani et al., 2003; Alzheimer’s Disease International, 2011; Connolly et al., 2011). Therefore, the case definition algorithm for the present study prioritized sensitivity over specificity.

Independent variables
Age, sex, and administrative health database of first identification were the three independent variables included in the analysis. Age was represented by the categories of 45-54, 55-64, 65-74, 75-84, and 85 years and older. The four administrative health datasets included hospital, physician, prescription drug, and long-term care.

Statistical analysis
The age structure of the total cohort was used to adjust the sex-specific incidence and prevalence rates for age, and 95% confidence intervals (CI) were calculated for all crude and age-standardized rates.

Incident cases were identified for each 12-month period between April 1, 2005 and March 31, 2013. Incident cases met the case definition criteria and had not been previously identified during the washout period between April 1, 2000 and March 31, 2005. The numerator for each 12-month incidence rate was the number of people alive on April 1 of each year, who also met the case definition of dementia between April 1 of that year and March 31 of the following year. The denominator was the population at risk of developing incident dementia (i.e., after removing individuals with prevalent dementia for the same period, the remaining were aged 45 years or older on April 1 of each year with at least one day of health insurance coverage for the 12-month period).

Prevalent cases met the case definition criteria for each 12-month period from April 1 to March 31 for the years 2005 to 2013. The numerator for each 12-month prevalence rate was the number of people alive on April 1 of each year who met the case definition criteria at any time prior to April 1 of that year. Those individuals at risk for prevalent dementia (i.e., all individuals in the covered population aged 45 years or older on April 1 of each year with at least one day of health insurance coverage for the 12-month period) constituted the denominator. For incidence and prevalence, we calculated the percentage changes between 2005/06 and 2012/13 in absolute number (n), percentage, population at risk (PAR), and age-standardized rate per 1,000 PAR, by dividing the difference between the two figures by the earlier figure and multiplying by 100. Percentage changes in age-standardized incidence and prevalence rates per 1,000 PAR were compared for significant differences (p < 0.05) using the χ² test, and 95% confidence intervals (CI) were calculated for all crude and age-standardized rates. All analyses were completed with SAS 9.3 (SAS Institute Inc, Cary NC).
Results

Incidence

As shown in Figure 1, the overall age-standardized incidence rate of dementia among individuals 45 years and older declined gradually and steadily from 2005/06 until 2010/11, rising slightly in 2011/12 before dropping again in 2012/13. Table 1 indicates that the annual population at risk for incidence rose steadily each year between 2005/06 to 2012/13. As shown in Table 2, the population at risk increased by 11.38% from 403,123 to 449,012 while the absolute number of overall incident cases dropped by 3.51% from 3,389 to 3,270 between 2005/06 and 2012/13. The overall age-standardized incidence rate declined significantly by 11.07% ($p < 0.0001$) from 8.41 to 7.48 per 1,000 PAR over the 8-year period.

Table 2 shows that although the female and male populations at risk increased between 2005/06 and 2012/13 (10.12% and 12.73% respectively), the absolute number of incident cases among females dropped while the absolute number of incident cases among males rose. Consequently, the age-standardized incidence rate decreased more markedly among females than males, dropping significantly by 12.97% ($p < 0.0001$) among females (from 8.31 to 7.23 per 1,000 PAR) compared to 8.39% ($p = 0.0072$) among males (from 8.56 to 7.84 per 1,000 PAR). The proportion of incident cases attributed to females vs. males dropped as well, by 3.66% from 59.89% to 57.71%. The age-standardized incidence rate was slightly higher among males than females in 2005/06 (8.56 vs. 8.31 per 1,000 PAR) and remained so in 2012/13 (7.84 vs. 7.23 per 1,000 PAR).

Overall mean age at identification in 2005/06 (81.67 ± 9.98 years) did not change significantly ($p = 0.24$) in 2012/13 (81.97 ± 10.70 years). As shown in Table 2, the population at risk changed most substantially in the 55-64 and 65-74 age groups, increasing 16-31% among females and 20-32% among males. Despite this, the age-standardized incidence rate in the 55-64 age group did not change significantly over time for either sex. Among females, significant declines in age-standardized incidence rates were apparent in the three oldest age groups, ranging from 11.97% ($p = 0.0377$) in those aged 85 and older (from 74.53 to 65.61 per 1,000 PAR) to 15.40% ($p = 0.0396$) in those aged 65-74 (from 4.85 to 4.10 per 1,000 PAR). A significant decline of 18.97% ($p = 0.0136$) in the age-standardized incidence rate among males was apparent only among those aged 65-74 (from 5.25 to 4.25 per 1,000 PAR). The population at risk remained stable and neither sex in the 45-54 age group experienced significant changes in age-standardized incidence rates over time.
In terms of the databases where incident cases of dementia were first identified, the greatest proportion were first identified in long-term care in 2005/06 (35.35%) and 2012/13 (34.98%) (Table 2). The declines over time in the crude incidence rates per 1,000 PAR over time were significant across every database with the exception of Prescription Drug, with similar declines in the Physician (14.17%; \(p = 0.0007 \)), Long-term Care (14.14%; \(p = 0.0002 \)) and Hospital databases (12.97%; \(p = 0.0022 \)).

Prevalence

Figure 2 shows that the overall age-standardized prevalence rate among those aged 45 and older increased between 2005/06 to 2012/13. Most of the increase took place in the first four years of the study period, with the upward trend slowing between 2009/10 and 2012/13. Over the 8-year period, the absolute number of overall prevalent cases rose 47.95% from 8,795 to 13,012, compared to an increase of 12.16% in the population at risk for prevalence from 411,918 to 462,024 (Table 1 and Table 3). The overall age-standardized prevalence rate increased significantly (\(p < 0.0001 \)) by 30.54% over time from 21.35 to 27.87 per 1,000 PAR.

As shown in Table 3, the population at risk increased slightly more among males than females (13.36% vs. 11.05%), as did the absolute number of prevalent cases (51.22% vs. 46.03%). As a result, the age-standardized prevalence rate increased significantly (\(p < 0.0001 \)) in both sexes, but to a slightly greater degree by 32.38% among males (from 20.51 to 27.15 per 1,000 PAR) compared to 29.48% among females (from 21.88 to 28.33 per 1,000 PAR). The proportion of prevalent cases attributed to males relative to females rose as well, from 36.94% to 37.76% (2.33%). However, the age-standardized incidence rate was slightly higher among females than males in 2005/06 (21.88 vs. 20.51 per 1,000 PAR) and remained so in 2012/13 (28.33 vs. 27.15 per 1,000 PAR).

Similar to increases in the population at risk for incident cases, the largest increases in the PAR for prevalent cases took place in the 55-64 and 65-74 age groups. With the exception of the 45-54 age group, significant increases in age-standardized prevalence rates were apparent in every age group for both sexes. The largest increase in the age-standardized prevalence rate for both sexes took place in the 55-64 age group (107.08% female, \(p < 0.0001 \); 48.72% male, \(p < 0.0001 \)) and the smallest increase was experienced by the 85 and older age group (23.98% female, \(p < 0.0001 \); 23.86% male; \(p < 0.0001 \)).
Figure 1 Age-standardized 12-month incidence of dementia among adults 45 years of age and older, Saskatchewan, from 2005/06 to 2012/13
Figure 2 Age-standardized 12-month prevalence of dementia among adults 45 years of age and older, Saskatchewan, from 2005/06 to 2012/13
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total population at risk (PAR)</td>
<td>403,123</td>
<td>407,409</td>
<td>417,605</td>
<td>426,839</td>
<td>431,628</td>
<td>438,941</td>
<td>445,187</td>
<td>449,012</td>
</tr>
<tr>
<td>Incident cases</td>
<td>3,389</td>
<td>3,338</td>
<td>3,314</td>
<td>3,312</td>
<td>3,320</td>
<td>3,346</td>
<td>3,475</td>
<td>3,270</td>
</tr>
<tr>
<td>Crude incidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6.96 (6.59-7.34)</td>
<td>6.64 (6.28-7.00)</td>
<td>6.54 (6.19-6.90)</td>
<td>6.40 (6.06-6.75)</td>
<td>6.53 (6.19-6.88)</td>
<td>6.31 (5.98-6.65)</td>
<td>6.68 (6.34-7.03)</td>
<td>6.28 (5.95-6.62)</td>
</tr>
<tr>
<td>Overall</td>
<td>8.41 (8.13-8.69)</td>
<td>8.19 (7.92-8.47)</td>
<td>7.94 (7.67-8.21)</td>
<td>7.76 (7.50-8.03)</td>
<td>7.69 (7.43-7.96)</td>
<td>7.62 (7.37-7.88)</td>
<td>7.81 (7.55-8.07)</td>
<td>7.04 (7.04-7.54)</td>
</tr>
<tr>
<td>Rate of age-standardized incidence (to 2005/06 total Sask. population)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>8.31 (7.95-8.68)</td>
<td>8.26 (7.91-8.63)</td>
<td>8.00 (7.65-8.36)</td>
<td>7.90 (7.56-8.26)</td>
<td>7.72 (7.38-8.07)</td>
<td>7.75 (7.42-8.10)</td>
<td>7.79 (7.46-8.14)</td>
<td>7.23 (6.91-7.56)</td>
</tr>
<tr>
<td>Male</td>
<td>8.56 (8.11-9.02)</td>
<td>8.20 (7.76-8.66)</td>
<td>8.19 (7.75-8.64)</td>
<td>8.05 (7.63-8.50)</td>
<td>8.23 (7.80-8.67)</td>
<td>7.95 (7.53-8.39)</td>
<td>8.38 (7.96-8.82)</td>
<td>7.84 (7.43-8.26)</td>
</tr>
<tr>
<td>Overall</td>
<td>8.41 (8.13-8.69)</td>
<td>8.24 (7.96-8.52)</td>
<td>8.07 (7.80-8.35)</td>
<td>7.96 (7.69-8.24)</td>
<td>7.92 (7.65-8.19)</td>
<td>7.83 (7.57-8.10)</td>
<td>8.03 (7.76-8.30)</td>
<td>7.48 (7.22-7.74)</td>
</tr>
<tr>
<td>Prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total population at risk (PAR)</td>
<td>411,918</td>
<td>417,297</td>
<td>428,269</td>
<td>438,069</td>
<td>443,466</td>
<td>451,222</td>
<td>457,822</td>
<td>462,024</td>
</tr>
<tr>
<td>Prevalent cases</td>
<td>8,795</td>
<td>9,888</td>
<td>10,664</td>
<td>11,230</td>
<td>11,838</td>
<td>12,281</td>
<td>12,635</td>
<td>13,012</td>
</tr>
<tr>
<td>Crude prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>26.00 (25.33-26.68)</td>
<td>28.84 (28.14-29.55)</td>
<td>30.47 (29.76-31.19)</td>
<td>31.46 (30.74-32.19)</td>
<td>32.87 (32.14-33.61)</td>
<td>33.32 (32.60-34.06)</td>
<td>33.79 (33.06-34.53)</td>
<td>34.19 (33.46-34.93)</td>
</tr>
<tr>
<td>Rate of age-standardized prevalence (to 2005/06 total Sask. population)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Change in 12-month incidence of dementia among adults 45 years of age and older, Saskatchewan, 2005/06 to 2012/13

<table>
<thead>
<tr>
<th>Age group</th>
<th>2005/06 Crude rate</th>
<th>2005/06 Age-standardized rate</th>
<th>2012/13 Crude rate</th>
<th>2012/13 Age-standardized rate</th>
<th>Change from 2005/06 to 2012/13 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>% PAR</td>
<td>n</td>
<td>% PAR</td>
<td>n</td>
<td>% PAR</td>
</tr>
<tr>
<td>45-54</td>
<td>45.7</td>
<td>35</td>
<td>1.9</td>
<td>75.340</td>
<td>0.46 (0.32-0.65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1.96</td>
<td>75.979</td>
<td>0.49 (0.34-0.67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1.96</td>
<td>75.979</td>
<td>0.49 (0.34-0.67)</td>
</tr>
<tr>
<td>55-64</td>
<td>45.7</td>
<td>60</td>
<td>3.7</td>
<td>80.85</td>
<td>1.4 (0.88-1.48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td>4.5</td>
<td>67.958</td>
<td>1.25 (1.00-1.55)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>165</td>
<td>8.7</td>
<td>42.193</td>
<td>3.91 (3.04-4.51)</td>
</tr>
<tr>
<td>65-74</td>
<td>45.7</td>
<td>178</td>
<td>7.7</td>
<td>48.156</td>
<td>2.18 (1.50-2.76)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>166</td>
<td>8.4</td>
<td>42.193</td>
<td>3.91 (3.04-4.51)</td>
</tr>
<tr>
<td>75-84</td>
<td>45.7</td>
<td>656</td>
<td>31.7</td>
<td>77.697</td>
<td>3.7 (2.99-4.45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>777</td>
<td>4.0</td>
<td>47.853</td>
<td>2.3 (1.90-2.76)</td>
</tr>
<tr>
<td>85+</td>
<td>45.7</td>
<td>1,011</td>
<td>52.4</td>
<td>75.751</td>
<td>3.7 (2.99-4.45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,061</td>
<td>56.2</td>
<td>15.367</td>
<td>1.06 (1.06-1.07)</td>
</tr>
<tr>
<td>All ages</td>
<td>45.7</td>
<td>2,030</td>
<td>100.0</td>
<td>207.766</td>
<td>3.5 (2.95-4.68)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,887</td>
<td>100.0</td>
<td>228.782</td>
<td>8.25 (7.88-8.63)</td>
</tr>
</tbody>
</table>

*a Test of difference between rate of incident dementia in 2005/06 vs 2012/13
*b Change in crude rate per 1,000 PAR
Table 3 Change in 12-month prevalence of dementia among adults 45 years of age and older, Saskatchewan, 2005/06 to 2012/13

<table>
<thead>
<tr>
<th>Age</th>
<th>2005/06</th>
<th>2012/13</th>
<th>Change from 2005/06 to 2012/13 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 3,389</td>
<td>n = 3,270</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>5,546</td>
<td>5,546</td>
<td>1.2%</td>
</tr>
<tr>
<td>55-64</td>
<td>4,593</td>
<td>4,593</td>
<td>1.2%</td>
</tr>
<tr>
<td>65-74</td>
<td>1,980</td>
<td>1,980</td>
<td>1.2%</td>
</tr>
<tr>
<td>85+</td>
<td>846</td>
<td>846</td>
<td>1.2%</td>
</tr>
<tr>
<td>All ages</td>
<td>13,664</td>
<td>13,664</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Male			
45-54	4,593	4,593	1.2%
55-64	4,593	4,593	1.2%
65-74	1,980	1,980	1.2%
85+	846	846	1.2%
All ages	13,664	13,664	1.2%

Notes:
- *p-value:* p < 0.0001
- Test of difference between rate of prevalent dementia in 2005/06 vs 2012/13
Discussion

Using a population-based retrospective cohort design, we identified incident and prevalent cases of dementia between April 1, 2005 and March 31, 2013 in linked administrative health databases (Hospital Discharge Abstracts, Physician Service Claims, Prescription Drug, and RAI-MDS, i.e., Long-term Care), among individuals 45 years and older at first identification of dementia.

Considering the first study objective to investigate simultaneous age- and sex-specific temporal trends in dementia incidence and prevalence, we found the overall age-standardized incidence rate declined significantly by 11.07% and the age-standardized prevalence rate increased significantly by 30.54% over the 8-year study period. Overall, the incidence rate declined from 8.41 to 7.48 per 1,000 PAR despite an 11.38% increase in the overall population at risk. Although both sexes experienced significant declines in the incidence rate over time, females experienced a slightly larger decrease than males (12.97% vs. 8.39%). The age-standardized incidence rate remained higher among males than females in 2012/13 (7.84 vs. 7.23 per 1,000 PAR) as in 2005/06 (8.56 vs. 8.31 per 1,000 PAR). Among females, significant decreases occurred only in the three oldest age groups, with the largest decline in the 65-74 age group. Among males, only the 65-74 age group experienced a significant decline over the 8-year period.

Overall, the age-standardized prevalence rate increased significantly by 30.54% from 21.35 to 27.87 per 1,000 PAR and population at risk increased by 12.16% between 2005/06 and 2012/13. Males experienced a slightly larger increase than females in the age-standardized prevalence rate over time (32.38% vs. 29.48%). The age-standardized prevalence rate was higher among females than males in 2005/06 (21.88 vs. 20.51 per 1,000 PAR) and remained so in 2012/13 (28.33 vs. 27.15 per 1,000 PAR). Significant increases were apparent in every age group for both sexes (except those 45-54), with the largest increment in the 55-64 age group and the smallest increment in the 85 and older age group for both sexes.

Considering the second study objective to stratify the changes in incidence over the 8-year study period by database of identification, significant decreases in the crude incidence rate per 1,000 PAR were apparent in 3 of the 4 databases examined, with declines of 13-14% across Hospital Discharge Abstracts, Physician Service Claims, and RAI-MDS (i.e., Long-term Care).
Incidence

Our finding of declining dementia incidence over time is consistent with all three original key studies published within the last 10 years on the topic of incidence trends (Rocca et al., 2011; Schrijvers et al., 2012; Qiu et al., 2013), two of which were field studies (Schrijvers et al., 2012; Qiu et al., 2013) and one a registry study (Rocca et al., 2011). Two of the three studies included nursing home residents (Rocca et al., 2011; Qiu et al., 2013), and one study did not specify whether nursing home residents were included (Schrijvers et al., 2012). Specifically, incidence rates declined an average of 2.5-3% per year in two of these studies (Rocca et al., 2011; Schrijvers et al., 2012) compared to 1.5% per year in the current study. Similar to the present study, Schrijvers et al., (2012) observed a slightly greater decrease in the incidence rate over time in females than males; in contrast to the present study, the incidence rate was higher among females than males at both time points.

Prevalence

Four of nine original studies are in line with our finding of rising prevalence over time (Sekita et al., 2010; Mathillas et al., 2011; Bertrand et al., 2013; Jacklin et al., 2013), including two field studies (Sekita et al., 2010; Mathillas et al., 2011) and two registry studies (Bertrand et al., 2013; Jacklin et al., 2013). One of these four studies included nursing home residents (Mathillas et al., 2011), one study did not (Hall et al., 2009; Bertrand et al., 2013), and two studies did not specify whether nursing home residents were included (Sekita et al., 2010; Jacklin et al., 2013). At 4.36% per year, the average annual prevalence rate growth in the present study is in the mid-range of other studies, which varied between 1.9-2% (Sekita et al., 2010; Bertrand et al., 2013), 2.7-9.8% (Jacklin et al., 2013), and 8% (Mathillas et al., 2011). In the present study, males experienced a slightly larger increase than females in the prevalence rate over time, whereas Sekita et al., (2010) observed the reverse. However, the prevalence rate remained higher in females than males over time in the present study, in line with findings from two studies of increasing prevalence trends (Sekita et al., 2010; Mathillas et al., 2011). Contrary to results from the present study, five of nine original studies on the topic of prevalence trends reported a downward (Lobo et al., 2007; Langa et al., 2008; Matthews et al., 2013) or stable temporal trend (Hall et al., 2009; Qiu et al., 2013); these were exclusively field studies. Three of these studies included nursing home residents (Lobo et al., 2007; Qiu et al., 2013; Matthews et al., 2013), and two did not (Langa et al., 2008; Hall et al., 2009).
Variations in the direction and magnitude of change over time in incidence and prevalence rates across studies may be due to differences in methodological approaches (e.g., registry vs. field studies), diagnostic and classification criteria, observation periods, and sample or population characteristics (e.g., age cut-offs, demographic trends in populations). It is important to note that in comparison to field studies, registry studies based on administrative health data, such as the present study, tend to underestimate the true number of individuals with dementia because dementia tends to be under-recognized in the health care system (Lambert et al., 2014).

Possible explanations

Recently published reviews and commentaries offer several possible explanations for decreasing rates of dementia incidence and prevalence over time, as well as for increasing rates of prevalence (Larson and Langa 2012; Banerjee 2013; Larson et al., 2013; Whalley and Smyth 2013; Lee 2014; Sachev 2014; Alzheimer’s Disease International, 2014; Alzheimer’s Disease International, 2015; Wu et al. 2015). Findings from several original studies provide preliminary supporting evidence for these observations.

First, cognitive reserve as an outcome of higher education and occupational complexity has been cited as a protective factor (Langa et al., 2008) and rising education levels and intellectual demands over time have been linked to declining incidence and prevalence of dementia in later cohorts (Langa et al., 2008; Hall et al., 2009; Rocca et al., 2011; Schrijvers et al., 2012; Matthews et al., 2013). Education levels have been rising in Saskatchewan, reflected in an annual 2.8% growth in the proportion of post-secondary graduates aged 25-64 between 2000 and 2012 (Statistics Canada, 2013a).

Recent evidence from a 25-year longitudinal study supports an association between reduced risk of dementia and healthy lifestyle or behaviour (e.g., non-smoking, physical activity, healthy diet, and limited alcohol intake) (Elwood et al., 2013). Increased uptake of healthy behaviours over time has been linked to declining dementia trends (Lobo et al., 2007; Hall et al., 2009; Qiu et al., 2013) as have reduced cardiovascular risks such as prevention of heart disease (Matthews et al., 2013), and decreased hypertension (Qiu et al., 2013), cholesterol (Qiu et al., 2013), and stroke (Rocca et al., 2011). However, a trend of increasing dementia prevalence in Japan has also been attributed to rising rates of obesity, hypercholesterolemia, and other metabolic disorders (Sekita et al., 2010). Population data indicate that
while the rate of non-smoking, physical activity, and fruit/vegetable consumption increased in Saskatchewan over the study period, so too did the rates of obesity, diabetes, and high blood pressure (Elliot, 2014; Statistics Canada, 2013b).

Recent studies support an association between temporal trends of dementia decline and improved treatment of vascular risks (Lobo et al., 2007; Qiu et al., 2013) such as the use of antithrombotic and lipid-lowering drugs (Schrijvers et al., 2012), antihypertensive medications (Langa et al., 2008; Hall et al., 2009) and statins (Langa et al., 2008; Hall et al., 2009; Schrijvers et al., 2012). The most recent available population-level data for Saskatchewan indicate declining annual rates of mortality due to major cardiovascular diseases (Statistics Canada, 2014b), heart diseases, and cerebrovascular diseases (2003-2009) (Statistics Canada, 2013b).

Last, increased dementia prevalence reflects lengthier duration of survival with dementia, possibly owing to improved care and treatment, such as better health services and institutional care (Sekita et al., 2010) and increased cholinesterase inhibitors prescriptions (Mathillas et al., 2013). Langa et al., (2008) proposed the ‘compression of cognitive morbidity’ hypothesis that declining dementia trends demonstrate a delay of dementia to older age, reflecting the positive association over time between quality of life and brain health. Mathillas et al., (2013) suggested that better treatment of cardiovascular risks and reduced mortality due to cardiovascular disease contributed to a growing pool of Swedish older adults aged 85 and older at risk of dementia, thereby reflecting a trend of increasing dementia prevalence in this age cohort.

In terms of the present study, immigration accounted for 37.8% of total population growth in Saskatchewan between 2006 and 2011 (Statistics Canada, 2012). It is plausible that our observation of declining dementia incidence despite population growth was partly due to limited recognition of dementia during encounters between health care professionals and older adult immigrants to Saskatchewan.

Several interrelated factors potentially account for the limited impact of the declining dementia incidence rate on the prevalence rate of dementia in the current study. The primary explanation may be that the 8-year observation period was too brief to demonstrate an impact. Second, rising prevalence despite declining incidence in the present study indicates that survival time with dementia was also increasing, from 2.56 years in 2005/06 (21.53/8.41) to 3.73 years in 2012/13 (27.87/7.48). Increased survival time and prevalence may be due to identification of dementia in earlier stages and improved treatment after identification. Last, the
declining provincial mortality rate and growth of the overall population at risk aged 45 and older minimized the impact of declining incidence upon prevalence during the short 8-year observation period. Beginning in 2009/10, declining incidence may have begun to manifest in a relatively slower increase in the prevalence rate compared to pre-2009/10, perhaps signalling the beginning of a stabilizing trend in dementia prevalence.
Conclusions

Study limitations

Administrative health data is collected for purposes other than disease surveillance, and as such, several limitations are associated with the use of administrative health data to determine incidence and prevalence of dementia. First, underdiagnosis of dementia is a significant issue, with 31-69% of primary care patients with dementia not receiving a formal documented diagnosis (Boustani et al., 2003; Bradford et al., 2009; Van den Dungen et al., 2012). As a result, studies based on administrative health data (i.e., registry-based studies) tend to produce underestimations of prevalence and incidence in comparison to field studies (i.e., two-phase studies with screening followed by a structured clinical evaluation) (Lambert et al., 2014). However, data linkage across sectors is possible in registry-based studies, allowing community- and institution-dwelling populations to be combined for a more complete picture of dementia epidemiology, in contrast to field studies of dementia epidemiology which typically do not combine these populations (e.g., Herrera et al., 2002; Shaji et al., 2005; Rodriguez et al., 2008; World Health Organization, 2012; Thies and Bleiler, 2013). Second, physician services claims permit a maximum of one diagnosis code per claim, therefore diseases due to dementia may not be captured in these claims if other presenting problems take precedence during patient visits. Finally, our study period of 7 years may be too short to discern a consistent and reliable pattern or trend in dementia over time.

Conclusions

Administrative health data is a valuable research tool in tracking trends in dementia incidence and prevalence. The present study demonstrated that over a 8-year period in the province of Saskatchewan, the age-standardized incidence rate of dementia declined among individuals aged 45 and older while the age-standardized prevalence rate simultaneously increased. These trends indicate that the average survival time with dementia was also increasing, suggesting the possibilities that recognition of dementia is taking place in earlier stages and treatment is improving. As individuals live longer with dementia, similar to other chronic diseases, they require active care and monitoring for an extended period of time (Bergman, 2009; Alzheimer’s Disease International, 2014). To spur improvements in dementia care and address increasing cost burdens, several G7 nations have developed national dementia strategies (France, Japan, United Kingdom, United States, Italy). Canada currently does not have a national dementia plan, despite an estimated 500,000 Canadians living with dementia in 2008 and over 100,000 incident cases developing.
each year (Dudgeon, 2010). Further reduction in dementia incidence is certainly possible with the type of concentrated focus that a national strategy promises, and future research should track these developments.
RaDAR and Health Quality Council Steering Committee

Dawna Abrahamson, Nurse Practitioner
Sunrise Health Region

Cathy Billett, Senior Continuing Care Consultant
Regina Qu’Appelle Health Region & Southern Saskatchewan

Joanne Bracken, Chief Executive Officer and RaDAR Collaborator
Alzheimer Society of Saskatchewan

Deb Coleman, Continuing Care Consultant
Sunrise Health Region

Nicole Gerein, Client Care Coordinator
Heartland Health Region

Sheena Grimes, Regional Manager, Primary Health Care Teams
Sun Country Health Region

Bev Greenwood, Continuing Care Consultant
Prairie North Health Region

Pat Kessler, Regional Director Home Care
Sun Country Health Region

Dr. Andrew Kirk, Professor and RaDAR Co-Investigator
Neurology Division, Department of Medicine, College of Medicine, University of Saskatchewan

Dr. Lisa Lix, Professor and Manitoba Research Chair
Department of Community Health Sciences, University of Manitoba

Joanne Michael, Director of Programs and Operations
Alzheimer Society of Saskatchewan

Arden Moore, Client/Patient Access Services, Rural Coordinator
Saskatoon Health Region

Dr. Haizhen Mou, Assistant Professor and RaDAR Co-Investigator
Johnson-Shoyama Graduate School of Public Policy, University of Saskatchewan

Pat Olson, Nurse Practitioner
Kelsey Trail Health Region

Dr. Larry Sandomirsky, Physician
Kelsey Trail Health Region

Dr. Norma Stewart, Professor and RaDAR Co-Investigator
College of Nursing, University of Saskatchewan
References

Banerjee, S. Good news on dementia prevalence - we can make a difference. *Lancet*, 382, 1384-1386.

